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AIlItrKt-The purposes of this paper are to (I) deduce a generalization of Von Karman's analysis,
incorporating the effects of transverse shear deformations and of laminations, with the planes of
the laminations not necessarily parallel to the plane of the plate; (2) further pursue the possibility
ofderiving plate equations from three-dimensional elasticity through use of a variational equation
for displacements and transverse stresses; (3) consider the possibility of utilizing finite-elasticity
variational formulations, including independent translational and rotational displacement com
ponents for the derivation of approximate two-dimensional results from three-dimensional theory.

INTRODUCTION

The considerations which follow have three different purposes. One purpose is to deduce a
generalization of von Karman's analysis of plates, incorporating the effects of transverse
shear deformation and of laminations, with the planes of the laminations not necessarily
parallel to the midplane of the plate. A second purpose is the further pursuit ofa possibility
of deriving two-dimensional plate equations from three-dimensional elasticity through the
use of a mixed variational equation for displacements and transverse stresses, in contrast
to corresponding considerations involving displacements and all stresses, or displacements
alone, or stresses alone. The third purpose is to consider the possibility of utilizing finite
elasticity variational formulations involving rotational displacements in addition to trans
lational displacements for direct-methods derivations of approximate two-dimensional
results from three-dimensional theory.

As regards the existence of related work we limit ourselves here to making reference
to an analysis of the problem of infinitesimal deflections of laminated plates using a
variational theorem for translational displacements and transverse stresses[3], and to a
formulation of a variational theorem in finite elasticity for translational and rotational
displacements and transverse stresses[2]. Other previous work on the derivation of linear
two-dimensional plate equations by direct methods variational procedures is too well known
to require enumeration in this place. As regards the relevant literature on variational
theorems in finite elasticity, including in particular formulations by Frayes de Veubeke,
Wempner, Bufler and Atluri, we here refer the reader to the list of references in Refs [1, 2].

THE VARIATIONAL EQUATION

Given a system of Cartesian coordinates Xl we consider an elastic layer - c ~ X3 ~ c,
bounded by a cylindrical surface f(xh X2) == O. We assume, for ease of discussion of the
essential aspects of what follows, that the faces X3 == ±c of the layer are traction free and
we do not here concern ourselves with the details of the traction distribution over the
cylindrical boundary portion. Given this three-dimensional problem we develop our analysis
to the point ofestablishing a system of two-dimensional differential equations, without the
simultaneous derivation of a consistent system of two-dimensional boundary conditions,
which we know to be possible.

tBased upon work supported by National Science Foundation Grant No. CEE-8213256.
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We take as our point of departure a variational equation of the form

where

(2)

In this the quantities tij are components of stress which we have, in the present con·
text[l, 2], designated as distinguished generalized Piola components. The quantities "Iij are
components of strain, which are conjugate to the Tif, inasmuch as the virtual work of the
stresses Tlj is of the form TI~Ylj'

Expressions for the "Iij, which we have earlier called generalized displacement gradient
components[l, 2], can be written in the form

(3)

in terms of the components of a displacement vector u = Ukek, and in terms of the com·
ponents of an orthogonal unit vector triad tj = cxj,tek which is used in the stress vector
representation Tj = Tljt).

With eqns (3) and the partial set of constitutive relations

(4)

as constraint equations for the variational equation (I), the Euler equations of (I) come
out to be the complementary set of constitutive relations, in the form

(5)

together with equations of force and moment equilibrium of the form

(6a, b)

In order to derive (5) and (6a, b) we use the fact that the variations Otl3' OT31' 0(tI2-T2') and
OUk are independent, and the the variations OCXj,t are, as a consequence of the orthogonality
equations CXj,ta.j,t = Ojj' expressible in the form a.jkOa.jk = e/jmoXm, in terms ofthree independent
variations OXm'

If we limit ourselves, as we shall do in what follows, to the range of small finite
rotations, in terms of rotational parameters Pi> in such a way as to retain no more than first
degree terms in P3 and second degree terms in P, and fJ2 then the quantities a.j,t in (3) come
out to be, in accordance with the analysis in Appendix B,

I
CX\2 = P3- '2P,P2,

a.22 = 1- ~Pi, (7)
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and, if we further assume small finite strains, the quantities 'Yij come out to be
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and

1 2
YII =UI.I+U3,IPI-'2P"

1 2
Y22 = U2,2+ U3.2P2- '2P2,

yl) = U3.t-PI>

'Y23 = U3,2-P2,

Y31 = "1.3+ I,

Y32 = "2.3 +P2'

(8)

(9)

(to)

with independent variations OPt in place of the variations ox"..
For the derivation of an approximate two-dimensional plate theory we will make use

ofeqn (t) in" the developed form

't12-'t2' (1 av ) (1 av )
+(YI2-Y2')O 2 + '2 af/3+"13 O't13+ '2 0i

13
+"31 O't31

+ (~~3 +"33)O't33 +'t130YI3 +'t3tOY3t +'t330'Y33] dx3dx, dx2= O. (ll)

DERIVATION OF APPROXIMATE TWO-DIMENSIONAL THEORY

Given various known results concerning two-dimensional theories of sixth or higher
order for shear-deformable plates, through use of the variational theorems for stresses or
displacements for the case of infinitesimal deformations, and through use ofthe variational
theorem for displacements in terms of Green strains for small finite deformations, we here
concern ourselves in particular with two specific questions. The first of these concerns the
effect of the occurrence of the rotational displacement variables PI' alongside the trans
lational displacement variables UI, in the mixed variational theorem for finite deformations
in eqn (1). Eventually, we hope to arrive at a conclusion that use of the PI in conjunction
with the Ult in place of the UI alone with the conventional variational theorem in terms of
Green strains, brings with it clearly identifiable advantages. For the present we limit
ourselves to placing on record the simplest such result which we have been able to obtain.
The second question concerns the form in which the effect ofthe transverse shearing stresses
will appear in the system of two-dimensional constitutive equations if we allow for such
anisotropy in a laminated material as is possible when the faces of the laminations are not
necessarily parallel to the faces X3 = ±c of the plate.

We begin our derivation by stipulating the wen-known translational displacement
component approximations

(12)

with VI' "'I and w being functions of x, and X2'

The second step in our derivation is the nonconventional introduction of analogous
approximations for the rotational variables PI' Given the appearance of the strain com
ponents in eqns (8) and (9), and given the nature of the approximations in (12) the simplest
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appropriate choice of the P; is thought to be

(13)

with cP; and w being functions of Xl and X2'

The third step consists in choosing approximations for the stress components 'til and
't3;, and for the reactive stress quantity 'tl2-'t21' In this account we are limiting ourselves to
the simplest possible rational approximations for these components by setting

i = 1,2, (14)

(15)

In writing (14) and (15) we have avoided making the further approximations which would
consist in stipulating Qil = Q3i> and we note that for problems involving distributed trans
verse surface loads we should replace the approximation 't33 = 0 by an expression accounting
for these surface loads. We note further that with the assumed general character of ani
sotropy and nonhomogeneity in thickness direction, and with the way in which the stresses
'til and 't3j appear in the variational equation (11), no other one-term approximations for
these stresses would generally be superior to the ones made in (14).

Having now (12) to (15) we take account of the fact that the assumptions (15) reduce
the variational equation (11) to the abbreviated form

and that, as a consequence, the strain component ')133 in (10) disappears from our consider
ation, while the strain components ')112 and ')121 occur only as the combination }il2' With this,
and with (12) and (13), we now write

(17)

where

(18)

(19)

(20)

The introduction of (17) and (14), in conjunction with an observation of the X3

independence of ')113 and YJ; in (20), and in conjunction with the defining relations

(21)

(22)



On finite deflections of anisotropic laminated elastic plates

1 fe av
"Ii = - -2 '-a" dX3'C -e 1'i3

reduces the triple integral relation (16) to a double integral relation, of the form

1111

(23)

With 15&11, 15&22, 15&12, 15"11, 15"22, 15"12, cSYi3 and cS"I3i expressed in terms of <SVi> cSw, cScPi and cSl/Ii
and their derivatives, eqn (24) implies the seven Euler equilibrium equations,

NII,I +N12,2 =0, (25)

(26)

Q31-QI3+(W,I-cP,)NII + (W.2 -cP2)N I2 = 0,

Q32 -Q23 + (w.I-q,t)N 12 +(W,2-q,2)N22 = 0,

together with the four Euler constitutive relations

(27)

(28)

(29)

where (29), with Yi as in (23), complements the constraint constitutive relations (21) and
(22). Altogether, we now have in (21), (22) and (25) to (29) a system of 17 equations for
the 17 dependent variables Nij = Nji , Mij = Mj;, Qi3' Q3h cPi> l/Ii' Vi and w.

Given that the transverse shear stress resultants QiJ and Q3i enter into the constitutive
equations which are associated with the equilibrium equations (25) to (28) entirely through
the combination

it suggests itself to rewrite (26) and (27), with the help. of (28) and (25) as follows

1
MII,I +M12,2 = QI + 2[(cPt- w.t)NII + (q,2- W.2)NI2],

1
M 2t •1+M22,2 = Q2+ 2[(cPl-W.I)N I2 +(cP2- W,2)N22],

and to note that as a consequence of (29)

(30)

(31)

(32)

(33)
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One of the questions which remains to be resolved concerns the relative significance
of the Yiterms in the equilibrium equations (31) and (32), relative to the significance of the
Qiterms in the constitutive equations (21) and (22).

FINITE DEFLECTION EQUATIONS WITH LINEAR CONSTITUTIVE EQUATIONS

Given the general system of constitutive equations (21), (22), and (29) with (23), it is
of particular interest to consider cases for which the semicomplementary energy function
V contains the strains and stresses by way of second and first degree terms only. Omitting,
for simplicity's sake, the effect of first degree terms we can then write, with suitable
coefficients A, B, C,

V = ~ (A "YT, +A22Y~2+A33YT2)+A 12YIIY22 +A 13YIIYI2+A23Y22YI2

-2c2(B 11 iT3 +B22i~3 +2BI2iI3i23)

+2C(CIIYlli13 + C12Ylli23 + C21 Y22 i 13 + C22Y22T23 + C31 Y12 t 13 + C32Y12i 23). (34)

In connection with this form of the function V we note in particular that the B~terms

represent the conventional transverse shear deformation effects, while the C-terms represent
the effect of laminations which are not parallel to the plane of the undeflected plate. We
further note the absence of T33~terms in (34), which would have to be present for cases
without the first of the two approximative assumptions in (15).

For what follows it is of considerable notational convenience to write in (17)

and to wri te in (21), (22), (25), (31) and (32)

Therewith, and with (34), (14) and (30) we obtain from (21) to (23) as a system of eight
two-dimensional constitutive equations

(37)

(38)

(39)

The associated equilibrium equations (25), (31) and (32) become, with the same change
of notation

(40)

(41)
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QI.I +Q2.2 = (1/11.1- ~Y!.I)NI + (1/12.2- ~'Y2.2)N2

+ (1/11.2- ~Y!.2+1/12.1- ~hl)N3' (42)

With the bending strains "i given in terms of the I/Iit in accordance with (19), and with
W.i and 4>; obtainable in terms of I/Ii and 'Y;, in accordance with (29), it suggests itself to
rewrite the expressions for the membrane strains e; in (29) with W,; and 4>; expressed in terms
of I/Ii and "I;. We find after an elementary calculation and upon neglecting second degree
terms in 'Yi

(43)

As regards the solution of the system of differential equations as stated we here note
as a possible procedure the following. We may use (39) to express the Qi in terms of the Vj'
l/Ij and 'Ij' The introduction of these expressions in (37) and (38) then gives the Ni and Mi

in terms of the Vj' l/Ij and "Ij' The subsequent introduction of this into the five equilibrium
equations in (40) to (42) leaves us with five differential equations for six dependent variables.
In order to have a sixth equation we must return to (29) and deduce from this as a further
relation involving l/Ij and "Ij

(44)

Given the existence of more practical reduction procedures for the special cases of
the problem of finite deflections of non-shear-deformab1e plates, and for the problem of
infinitesimal deflections of shear-deformable plates, it may well be that the above reduction
procedure for the general case will turn out to be amenable to further improvements.
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APPENDIX A: DERIVATION OF THE SEMICOMPLEMENTARY ENERGY FUNCTION V

Given a complementary energy function W". W(tl h til' '1'22; tn, t23' '1'))) and the set of six constitutive
relations I'll ". aWfOtll ,11l ". aW/aill, etc., with the 1and t as in (2), we deduce a suitable umicomplementary
energy function V upon inverting the subset of three constitutive equations

(AI)

in the form

and upon then defining V". V('l'II,YI2,1'12; Tn, Tn, '1'))) as

V". 'l'1I'1'lIb'II," .;Tn, ...)+ '" - W['I'II(" .), .•. ;Tn, ...J.

Equation (A3) implies the subset of inverted constitutive equations

(A2)

(A3)

(A4)
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and the introduction of (A3) into the variational equation

(AS)

with )II} as in (3) and with independent variations (nil' OUk and oXm. where oaJk = ei}'.a,.oXm. transforms (AS) into
the variational equation (I), with independent variations ou.. OXm. 0',3, 0'3, and 0('12-'21) [2].

For the case of a complementary energy function

(A6)

where Wo and W2 are homogeneous of the second degree and WI is homogeneous of the first degree. the three
constitutive equations (AI) are a system of three linear equations fOTTlI' Tu. 'n, ofthc form

(A7)

with solution functions which depend linearly on 1'lh YI2.)122 and TIJ. T23' '3J'
The introduction of these solution functions into the defining relation (A3), in the form

(AS)

and an observation of the homogeneity consequences

(A9)

gives as expression for V

(A10)

In order to see the nature of the coefficients A. B, C in (34) in terms of the set of analogous coefficients in
(A6) we write

Equations (A7) now become. with a,j = aj!'

aliT II +al2'n+ a n T I2 = 'Fn-CnTn -CuT23- Cn TJh

a21 T II + T22'22 +a23T12 = '1'22 - C21 T13- C22TV -C2JTll.

aJIT" +a)2T22+ a llT I2 =112-C3ITIJ-C32i23-CllTll'

(All)

(AI2)

(AI3)

(AI4)

The introduction of the solutions Tlh '22. TI2 of the system (AI4) into (All) and the subsequent introduction of
the resulting expression. together with Wo from (A13). into (AIO) gives Vas the desired quadratic form in 'FII, 1'22'

YI2 and Til' T2), '33' The case which is considered in the body of the text represents a slight practical simplification
of the above, which results upon stipulating CIJ =0 in (AI2) and blJ =0 in (AI3).

APPENDIX B: A PARAMETRIC REPRESENTATION FOR ROTATIONS

Given the set of six orthonormality conditions (%"(%j' = 0.. for the nine coefficients in the triad relations
~ = IXjACA it is to be expected that the lXij can be expressed in terms of three unrestricted parameters. Ofthe various
ways in which this can be done we here describe one, which is unsymmetrical in a fashion appropriate to its use
for the analysis of plates.

We begin by introducing an angular rotation measure P3 in the plane of the plate and a system of planar
rotated unit vectors ei , in the form

(Bl)

where Ci .. cos PI and Sl .. sin PI'
Subsequent to this we introduce two angular measures Ph P2 for rotation out of this plane by writing

(B2)
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Having t, and t2 we write t) = t, x t2• With (B2) this makes

h 2t) = e)(c\c2-g2)-el(s,c2+szg)-e2(s2c\ +s,g).

The introduction of (B I) into (B2) and (B3) leads to the following expressions for the coefficients alj'

1115

(B3)

he1,!, = C)CI +s39. han = s)c,-c39.

ha2\ = -s)c2+c39. han = C)C2-S39.

h 2a)\ = S)S2CI-C)S\C2+ S)Slg-C)Szg.

h 2a)2 = -S)S,C2- C)S2C,-S)Szg-C)Slg.

h2a)) = C\C2-g2.

hilI) .., Sh

han'" S2.

(84)

Retention of no more than second degree terms in fJl and fJ2 and first degree terms in fJ) in (84) results in the
approximate relations in (7).


